Identifying the agricultural imprint on the global N2O budget using stable isotopes
نویسندگان
چکیده
Agricultural soils are the most important anthropogenic source of nitrous oxide to the atmosphere. We observed large shifts with time in the emission rate (from 170 to 16 ng N cm−2 h−1) and in δ15N of N2O emitted (from −46‰ to +5‰ relative to atmospheric N2) from a urea-fertilized and irrigated agricultural field in Mexico. We calculated overall instantaneous enrichment factors for the sampling period, which suggest that the microbial N2O production shifts from nitrification (week 1) to denitrification (week 2). Isotopic signatures of N2O emissions were not always in accord with other proxies (such as NO/N2O emission ratio or water-filled pore space) used to estimate the relative importance of nitrification and denitrification as N2O sources. These observations strongly suggest that the soil surface emissions integrate processes occurring at different depths in the soil and a decoupling of NO and N2O production in this system. Further clues as to the source of N2O come from the positional dependence of 15N in the emitted N2O, reported here for the first time in soil emissions. Enrichment at the central N position increased relative to the terminal N position by 9.3‰ during the first 4 days after irrigation, implying that nitrification preferentially enriches the central N position compared to denitrification. The overall δ15N signature we measured for N2O emitted from Nfertilized agricultural systems is more depleted than observed δ15N values for N2O emitted from more Nlimited forest soils. Assuming that one half of the total agricultural N2O emissions associated with the global increase in soil nitrogen fertilizer use have an isotopic composition comparable to those of the agricultural fields reported here, we predict a decline in the isotopic signature of tropospheric N2O during this century of as much as 3‰ for 15N. Although many uncertainties remain, we suggest that measurements of δ15N-N2O in firn air will provide constraints on how the N2O budget has changed during the past century.
منابع مشابه
Tree species of the Central Amazon and soil moisture alter stable isotope composition of nitrogen and oxygen in nitrous oxide evolved from soil.
The use of stable isotopes of N and O in N2O has been proposed as a way to better constrain the global budget of atmospheric N2O and to better understand the relative contributions of the main microbial processes (nitrification and denitrification) responsible for N2O formation in soil. This study compared the isotopic composition of N2O emitted from soils under different tree species in the Br...
متن کاملFrom the Ground Up: Global Nitrous Oxide Sources are Constrained by Stable Isotope Values
Rising concentrations of nitrous oxide (N2O) in the atmosphere are causing widespread concern because this trace gas plays a key role in the destruction of stratospheric ozone and it is a strong greenhouse gas. The successful mitigation of N2O emissions requires a solid understanding of the relative importance of all N2O sources and sinks. Stable isotope ratio measurements (δ15N-N2O and δ18O-N2...
متن کاملNitrogen and oxygen isotopomeric constraints on the origins and sea-to-air flux of N2O in the oligotrophic subtropical North Pacific gyre
[1] Although the oceans are a significant source of the greenhouse gas nitrous oxide (N2O) to the atmosphere, the magnitude and characteristics of this source are poorly constrained. We present here stable isotope and isotopomer (intramolecular distribution of N within the linear NNO molecule) results for N2O and oxygen stable isotopic data for dissolved O2 from Station ALOHA in the subtropical...
متن کاملStable Isotope Application in Animal Nutrition Science
The application of stable isotope analysis (SIA) has become a standard scientific approach in Agricultural and Ecological researches and, more in general, in several disciplines such as biology, botany, zoology, organic chemistry, climatology, and nutrition. The main objectives of this paper are (1) to provide a simple definition of stable isotopes and (2) to illustrate analytical measurement m...
متن کاملمطالعه بنیادی برهم کنش گاز N2O بر روی سطوح حالتهای خالص و آلایش یافته با Si، Ga و SiGa نانو لوله آرمچیر بور فسفید: به روش DFT
In present research, the electrical, structural, quantum and Nuclear Magnetic Resonance (NMR) parameters of interaction of N2O gas on the B and P sites of pristine, Ga-, Si- and SiGa-doped (4,4) armchair models of boron phosphide nanotubes (BPNTs) are investigated by using density functional theory (DFT). For this purpose, seven models for adsorption of N2O gas on the exterior surfaces of BPN...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017